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Definition 1. Let X be a topological space and let K C X.
A cover of K is a collection € C X such that X C UC.
Let € be a cover of K.
We say that C is a finite cover if C contains finitely many sets.
We say that C is an open cover if every set in C is open.
We say that D C C is a subcover of C if X € ND.
We say that K is compact if every open cover of K has a finite subcover.

The concept of compactness has its origins in proofs around the end of the
eighteenth century that continuous functions on closed intervals are uniformly con-
tinuous. It has since become an important topological invariant for classification of
more abstract spaces. Invariance is a consequence of the next proposition, which
says that the continuous image of a compact set is compact.

Proposition 1. Let X and Y be topological spaces and let f : X — Y be a
continuous function. Let K C X be compact. Then f(K) is compact.

Proof. Let V be an open cover of f(K). Define
U={UcCX|U=f (V) for some V € V}.
Clearly K € UU, and since f is continuous, each set in U is open, so U is an open
cover of K. Thus, U has a finite subcover, say
{U1,...,U,} C U
For each i = 1,...,n, there exists V; € V such that U; = f~1(V;). Since K C

U, U;, we see that f(K) C U™, V;. Thus, {Vi,...,V,} is an open cover of f(K),
which shows that f(K) is compact. O

The following result is interesting in its own right and is useful in what follows.

Proposition 2. Let X be a topological space. Let K C X be compact, and let
F C K be closed. Then F is compact.

Proof. Let € be an open cover of F, and let U = F°. Since F is closed, U is open.
Moreover, CU {U} covers X, so it also covers K. As such, since K is compact,
CU{U} has a finite subcover of K, say D is a finite open cover of K. Then, D also
covers F'. Note that U is unnecessary to help cover F', and indeed, D{U} is a finite
subcover of €. Thus F' is compact. [
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Compactness is an abstract concept which models some important aspects of
certain subsets of a more concrete topological space, the metric space R™. The
Heine-Borel theorem states that a subset of R™ is compact if and only if it is closed
and bounded. We prove this theorem in parts; the forward direction can be stated
for an arbitrary metric space.

Definition 2. Let X be a metric space and let D C X. We say that D is bounded
if there exists a € X and r € R such that D C B,(a), where

B.(a) ={zx € X | d(a,x) <r}.

Proposition 3. Let (X,d) be a metric space, and let K C X. If K is compact,
then K s bounded.

Proof. If K is empty, it is bounded, so we assume that K is nonempty. Let z € K.
Let

C={B,.(z)|r eR}.
The sets in € are open, and K C X = UC = X, so C is an open cover of K, so C has
a finite subcover, say D C C. Let R = max{r € R| B,(x) € D}. Then K C Bgr(x),
so K is bounded. O

Proposition 4. Let X be a Hausdorff space, and let K C X be compact. Then K
is closed.

Proof. We wish to show that X ~\ K is open. Let x € X \ K it suffices to show
that x has an open neighborhood which is disjoint from K.

For each y € K, there exists disjoint open sets U, and V,, such that z € U, and
y € V. The collection V = {V,, | y € K} is an open cover of K, and since K
is compact, it has a finite subcover, say {Vy,,...,V,, }. Then Ni_,U,, is an open
neighborhood of  which is disjoint from K.

We may demonstrate disjointness via DeMorgan’s laws, as follows. For A C X,
let A = X \ A denote the complement of A. Note that for A C B we have B¢ C A°.
We see that U, C V7. Now K C Ui, V), so

K° o (Lnjv): Ave > N0
i=1 i=1 =1

so N, U,, is disjoint from K. O

Example 1. We give an example of a topological space which contains a compact
set which is not closed.

Let I = [0,1], and let X = I U {0}, where 0’ is an alternate version of zero.
The topology of X is generated by the open sets in I, together with the open
neighborhood of 0, which are sets of the form {0’} U (0,a) for a € (0,1). This is a
T, space which is not Hausdorff. Then I C X is compact, but not closed, since its
complement {0’} is not open.

Of course, this example requires knowledge that I is compact. The proof of this
follows.



Proposition 5. The closed unit interval I = [0, 1] is compact.

Proof. Let O be an (arbitrary!) open cover. Let P be the set of points z in [0, 1]
such that [0, 2] can be covered by finitely many elements of ©. Under the convention
that [0,0] = {0}, we have 0 € P and P is bounded above by 1. Therefore, P has a
supremum .

We first show that [0, s] can be covered by finitely many sets in @. This is trivial
when s = 0, so assume s > 0. Let O5 € O be a set containing s. Then there is
an € € (0, s) such that (s — ¢, s] C O,. By assumption, there is a finite subcover of
[0,s — €/2]. By adding O; to that finite subcovering, we get a finite subcovering of
[0, s].

We now show that s = 1. Suppose s < 1 and let O, € O be a set containing
s. Then there is an € > 0 such that [s,s 4+ ¢€) C O,. So taking a finite subcover of
[0, s] and adding the set Oy gives us a finite subcover of [0, s 4 €/2], contradicting
the construction of s.

O

Next, we wish to show that the product of two compact spaces is compact. This
is most easily expressed using the following lemma, which is a version of the famous
“Tube Lemma”.

Lemma 1. Let X and Y be topological spaces, with Y compact. Let U C X XY
be an open set. Let

V={zeX|{z}xY CU}.
Then V' is open in X.

Proof. Sets of the form D x E, where D C X and F C Y, form a basis for the
topology of X x Y.

Let x € V, so that {z} x Y C U. For each y € Y, there exist open sets D, C X
and E, C Y such that (z,y) € D, x E, C U. Since Y is compact, there is a finite
set {y1,...,yx} C Y such that Y C U¥ | E,. Set N, = N¥ | D,., so that N, is an
open subset of X. Moreover,

k
N, xY c | (V. x By,) C U (D, x B,,) C U,
i=1
so N, C V. Thus V = U,cy N, is open in X. O



Proposition 6. Let X and Y be compact topological spaces. Then X X Y is
compact.

Proof. Let U be an open cover of X X Y; we wish to show that U has a finite
subcover.

For each = € X, let Y, = {z} x Y. Clearly Y, is homeomorphic to Y, and so
it is compact. The set in U is an open cover of Y., so it admits a finite subcover.
Thus for each x € X, let U, C U be finite and cover Y.

Now, for each x € X, let

Ve ={2' € X | Yy CUU,}.

By Lemma 1, V, is open in X, and € V.. Thus {V, | x € X} is an open cover
of X, and since X is compact, there exists a finite set {z1,...,2,} C X such that
{Vays..., V. } covers X. Each V,, x Y is covered by finitely many sets from U.
Combining these collections gives a finite subset of U which covers X x Y. O

Proposition 7. The hypercube [—a,a]™ C R™ is compact.

Proof. There exists a continuous function I — [—a, al, so [—a, a] is compact. Since
the product of two compact sets is compact, it is clear by induction that the product
of finitely many compact sets is compact. Thus, [—a, a]™ is compact. O

Theorem 1. (Heine-Borel Theorem) A subset of R™ is compact if and only if
it is closed and bounded.

Proof. Let K C R”.

(=) Suppose that K is compact. Then, since R™ is a metric space, K is bounded.
Also, since R" is Hausdorff, K is closed.

(<) Suppose that K is closed and bounded. Since K is bounded, there exists
a € R such that K C [—a, a]™, which is compact. Thus, K is a closed subset of a
compact set, and so K is also compact. ([

Exercise 1. Let R*> denote the set of all sequences of real numbers which are
eventually zero, that is, sequences & = (z,,) such that z,, = 0 for all but finitely
many n. Let X = R* and for &,y € X, define

where ¥ = (x,) and ¥ = (y,). This make sense without considering convergence,
since there are only finitely many nonzero summands. Then (X,d) is a metric

space. Let |Z] = d(Z,0). Show that
D={ZeR>||7F <1}
is closed and bounded but not compact.
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