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Abstract. Partially from

• https://math.stackexchange.com/questions/188996/showing-that-0-1-is-compact

• https://math.stackexchange.com/questions/567335/cartesian-product-of-compact-sets-is-compact

Definition 1. Let X be a topological space and let K ⊂ X.
A cover of K is a collection C ⊂ X such that X ⊂ ∪C.
Let C be a cover of K.
We say that C is a finite cover if C contains finitely many sets.
We say that C is an open cover if every set in C is open.
We say that D ⊂ C is a subcover of C if X ⊂ ∩D.
We say that K is compact if every open cover of K has a finite subcover.

The concept of compactness has its origins in proofs around the end of the
eighteenth century that continuous functions on closed intervals are uniformly con-
tinuous. It has since become an important topological invariant for classification of
more abstract spaces. Invariance is a consequence of the next proposition, which
says that the continuous image of a compact set is compact.

Proposition 1. Let X and Y be topological spaces and let f : X → Y be a
continuous function. Let K ⊂ X be compact. Then f(K) is compact.

Proof. Let V be an open cover of f(K). Define

U = {U ⊂ X | U = f−1(V ) for some V ∈ V}.
Clearly K ∈ ∪U, and since f is continuous, each set in U is open, so U is an open
cover of K. Thus, U has a finite subcover, say

{U1, . . . , Un} ⊂ U.

For each i = 1, . . . , n, there exists Vi ∈ V such that Ui = f−1(Vi). Since K ⊂
∪ni=1Ui, we see that f(K) ⊂ ∪ni=1Vi. Thus, {V1, . . . , Vn} is an open cover of f(K),
which shows that f(K) is compact. �

The following result is interesting in its own right and is useful in what follows.

Proposition 2. Let X be a topological space. Let K ⊂ X be compact, and let
F ⊂ K be closed. Then F is compact.

Proof. Let C be an open cover of F , and let U = F c. Since F is closed, U is open.
Moreover, C ∪ {U} covers X, so it also covers K. As such, since K is compact,
C∪{U} has a finite subcover of K, say D is a finite open cover of K. Then, D also
covers F . Note that U is unnecessary to help cover F , and indeed, D{U} is a finite
subcover of C. Thus F is compact. �
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Compactness is an abstract concept which models some important aspects of
certain subsets of a more concrete topological space, the metric space Rn. The
Heine-Borel theorem states that a subset of Rn is compact if and only if it is closed
and bounded. We prove this theorem in parts; the forward direction can be stated
for an arbitrary metric space.

Definition 2. Let X be a metric space and let D ⊂ X. We say that D is bounded
if there exists a ∈ X and r ∈ R such that D ⊂ Br(a), where

Br(a) = {x ∈ X | d(a, x) < r}.

Proposition 3. Let (X, d) be a metric space, and let K ⊂ X. If K is compact,
then K is bounded.

Proof. If K is empty, it is bounded, so we assume that K is nonempty. Let x ∈ K.
Let

C = {Br(x) | r ∈ R}.
The sets in C are open, and K ⊂ X = ∪C = X, so C is an open cover of K, so C has
a finite subcover, say D ⊂ C. Let R = max{r ∈ R | Br(x) ∈ D}. Then K ⊂ BR(x),
so K is bounded. �

Proposition 4. Let X be a Hausdorff space, and let K ⊂ X be compact. Then K
is closed.

Proof. We wish to show that X rK is open. Let x ∈ X rK; it suffices to show
that x has an open neighborhood which is disjoint from K.

For each y ∈ K, there exists disjoint open sets Uy and Vy such that x ∈ Uy and
y ∈ Vy. The collection V = {Vy | y ∈ K} is an open cover of K, and since K
is compact, it has a finite subcover, say {Vy1 , . . . , Vyn}. Then ∩ni=1Uyi is an open
neighborhood of x which is disjoint from K.

We may demonstrate disjointness via DeMorgan’s laws, as follows. For A ⊂ X,
let Ac = XrA denote the complement of A. Note that for A ⊂ B we have Bc ⊂ Ac.
We see that Uy ⊂ V c

y . Now K ⊂ ∪ni=1Vyi
, so

Kc ⊃
( n⋃

i=1

Vyi

)c
=

n⋂
i=1

V c
yi
⊃

n⋂
i=1

Uyi
,

so ∩ni=1Uyi
is disjoint from K. �

Example 1. We give an example of a topological space which contains a compact
set which is not closed.

Let I = [0, 1], and let X = I ∪ {0′}, where 0′ is an alternate version of zero.
The topology of X is generated by the open sets in I, together with the open
neighborhood of 0′, which are sets of the form {0′} ∪ (0, a) for a ∈ (0, 1). This is a
T1 space which is not Hausdorff. Then I ⊂ X is compact, but not closed, since its
complement {0′} is not open.

Of course, this example requires knowledge that I is compact. The proof of this
follows.
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Proposition 5. The closed unit interval I = [0, 1] is compact.

Proof. Let O be an (arbitrary!) open cover. Let P be the set of points x in [0, 1]
such that [0, x] can be covered by finitely many elements ofO. Under the convention
that [0, 0] = {0}, we have 0 ∈ P and P is bounded above by 1. Therefore, P has a
supremum s.

We first show that [0, s] can be covered by finitely many sets in O. This is trivial
when s = 0, so assume s > 0. Let Os ∈ O be a set containing s. Then there is
an ε ∈ (0, s) such that (s− ε, s] ⊆ Os. By assumption, there is a finite subcover of
[0, s− ε/2]. By adding Os to that finite subcovering, we get a finite subcovering of
[0, s].

We now show that s = 1. Suppose s < 1 and let Os ∈ O be a set containing
s. Then there is an ε > 0 such that [s, s + ε) ⊆ Os. So taking a finite subcover of
[0, s] and adding the set Os gives us a finite subcover of [0, s + ε/2], contradicting
the construction of s.

�

Next, we wish to show that the product of two compact spaces is compact. This
is most easily expressed using the following lemma, which is a version of the famous
“Tube Lemma”.

Lemma 1. Let X and Y be topological spaces, with Y compact. Let U ⊂ X × Y
be an open set. Let

V = {x ∈ X | {x} × Y ⊂ U}.
Then V is open in X.

Proof. Sets of the form D × E, where D ⊂ X and E ⊂ Y , form a basis for the
topology of X × Y .

Let x ∈ V , so that {x} × Y ⊂ U . For each y ∈ Y , there exist open sets Dy ⊂ X
and Ey ⊂ Y such that (x, y) ∈ Dy × Ey ⊂ U . Since Y is compact, there is a finite
set {y1, . . . , yk} ⊂ Y such that Y ⊂ ∪ki=1Ey. Set Nx = ∩ki=1Dyi

, so that Nx is an
open subset of X. Moreover,

Nx × Y ⊂
k⋃

i=1

(Nx × Eyi
) ⊂ ∪ki=1(Dyi

× Eyi
) ⊂ U,

so Nx ⊂ V . Thus V = ∪x∈VNx is open in X. �
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Proposition 6. Let X and Y be compact topological spaces. Then X × Y is
compact.

Proof. Let U be an open cover of X × Y ; we wish to show that U has a finite
subcover.

For each x ∈ X, let Yx = {x} × Y . Clearly Yx is homeomorphic to Y , and so
it is compact. The set in U is an open cover of Yx, so it admits a finite subcover.
Thus for each x ∈ X, let Ux ⊂ U be finite and cover Yx.

Now, for each x ∈ X, let

Vx = {x′ ∈ X | Yx′ ⊂ ∪Ux}.
By Lemma 1, Vx is open in X, and x ∈ Vx. Thus {Vx | x ∈ X} is an open cover
of X, and since X is compact, there exists a finite set {x1, . . . , xr} ⊂ X such that
{Vx1 , . . . , Vxr} covers X. Each Vxi × Y is covered by finitely many sets from U.
Combining these collections gives a finite subset of U which covers X × Y . �

Proposition 7. The hypercube [−a, a]n ⊂ Rn is compact.

Proof. There exists a continuous function I → [−a, a], so [−a, a] is compact. Since
the product of two compact sets is compact, it is clear by induction that the product
of finitely many compact sets is compact. Thus, [−a, a]n is compact. �

Theorem 1. (Heine-Borel Theorem) A subset of Rn is compact if and only if
it is closed and bounded.

Proof. Let K ⊂ Rn.
(⇒) Suppose that K is compact. Then, since Rn is a metric space, K is bounded.

Also, since Rn is Hausdorff, K is closed.
(⇐) Suppose that K is closed and bounded. Since K is bounded, there exists

a ∈ R such that K ⊂ [−a, a]n, which is compact. Thus, K is a closed subset of a
compact set, and so K is also compact. �

Exercise 1. Let R∞ denote the set of all sequences of real numbers which are
eventually zero, that is, sequences ~x = (xn) such that xn = 0 for all but finitely
many n. Let X = R∞ and for ~x, ~y ∈ X, define

d(~x, ~y) =

√√√√ ∞∑
i=1

(xi − yi)2,

where ~x = (xn) and ~y = (yn). This make sense without considering convergence,
since there are only finitely many nonzero summands. Then (X, d) is a metric

space. Let |~x| = d(~x,~0). Show that

D = {~x ∈ R∞ | |~x| ≤ 1}
is closed and bounded but not compact.
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